Increasing TRPV4 expression restores flow-induced dilation impaired in mesenteric arteries with aging
نویسندگان
چکیده
The flow-stimulated intracellular Ca(2+) concentration ([Ca(2+)]i) rise in endothelial cells is an important early event leading to flow-induced blood vessel dilation. Transient receptor potential vanilloid subtype 4 (TRPV4), a Ca(2+)-permeable cation channel, facilitates the flow-stimulated [Ca(2+)]i rise. To determine whether TRPV4 is involved in age-related flow-induced blood vessel dilation impairment, we measured blood vessel diameter and nitric oxide (NO) levels and performed Ca(2+) imaging, immunoblotting, and immunostaining assays in rats. We found that the flow-induced and TRPV4 activator 4α-PDD-induced dilation of mesenteric arteries from aged rats were significantly decreased compared with those from young rats. The flow- or 4α-PDD-induced [Ca(2+)]i rise was also markedly reduced in primary cultured mesenteric artery endothelial cells (MAECs) from aged rats. Immunoblotting and immunostaining results showed an age-related decrease of TRPV4 expression levels in MAECs. Additionally, the 4α-PDD-induced NO production was significantly reduced in aged MAECs. Compared with lentiviral GFP-treated aged rats, lentiviral vector delivery of TRPV4 increased TRPV4 expression level in aged MAECs and restored the flow- and 4α-PDD-induced vessel dilation in aged mesenteric arteries. We concluded that impaired TRPV4-mediated Ca(2+) signaling causes endothelial dysfunction and that TRPV4 is a potential target for clinical treatment of age-related vascular system diseases.
منابع مشابه
Characterization of blood pressure and endothelial function in TRPV4‐deficient mice with l‐NAME‐ and angiotensin II‐induced hypertension
Transient receptor potential vanilloid type 4 (TRPV4) is an endothelial Ca(2+) entry channel contributing to endothelium-mediated dilation in conduit and resistance arteries. We investigated the role of TRPV4 in the regulation of blood pressure and endothelial function under hypertensive conditions. TRPV4-deficient (TRPV4(-/-)) and wild-type (WT) control mice were given l-NAME (0.5 g/L) in drin...
متن کاملTRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress.
The transient receptor potential vallinoid type 4 (TRPV4) channel has been implicated in the endothelial shear response and flow-mediated dilation, although the precise functions of this channel remain poorly understood. In the present study, we investigated the role of TRPV4 in shear stress-induced endothelial Ca(2+) entry and the potential link between this signaling response and relaxation o...
متن کاملTRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure.
Transient receptor potential vanilloid 4 (TRPV4) channels have been implicated as mediators of calcium influx in both endothelial and vascular smooth muscle cells and are potentially important modulators of vascular tone. However, very little is known about the functional roles of TRPV4 in the resistance vasculature or how these channels influence hemodynamic properties. In the present study, w...
متن کاملTransient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo.
Agonist-induced Ca2+ entry is important for the synthesis and release of vasoactive factors in endothelial cells. The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+-permeant cation channel, is expressed in endothelial cells and involved in the regulation of vascular tone. Here we investigated the role of TRPV4 channels in acetylcholine-induced vasodilation in vitro and in...
متن کاملDownregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension.
Endothelium-dependent hyperpolarization (EDH)-mediated responses are impaired in hypertension, but the underlying mechanisms have not yet been determined. The activation of small- and intermediate-conductance of Ca2+-activated K+ channels (SKCa and IKCa) underpins EDH-mediated responses. It was recently reported that Ca2+ influx through endothelial transient receptor potential vanilloid type 4 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016